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ABSTRACT execution cost in terms of computation and communication, we

To minimize data movement, state-of-the-art parallel sorting al-
gorithms use techniques based on sampling and histogramming
to partition keys prior to redistribution. Sampling enables parti-
tioning to be done using a representative subset of the keys, while
histogramming enables evaluation and iterative improvement of a
given partition. We introduce Histogram sort with sampling (HSS),
which combines sampling and iterative histogramming to find high-
quality partitions with minimal data movement and high practical
performance. Compared to the best known (recently introduced)
algorithm for finding these partitions, our algorithm requires a fac-
tor of ©(log(p)/ loglog(p)) less communication, and substantially
less when compared to standard variants of Sample sort and His-
togram sort. We provide a distributed-memory implementation of
the proposed algorithm, compare its performance to two existing
implementations, and provide a brief application study showing
benefit of the new algorithm.
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1 INTRODUCTION

Finding a global partition of the data is the key challenge that
separates parallel sorting from sequential sorting. Partition-based
sorting algorithms, that partition the data prior to redistributing it
(in contrast to merge-based sorting algorithms), are advantageous
on modern architectures due to their low communication cost. Sam-
pling data either uniformly or selectively and histogramming the
split produced by the partition are the two most common tech-
niques for determining a good partition. By quantifying the parallel
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demonstrate that a simple but careful combination of these two
techniques leads to an algorithm that provides both theoretical and
practical improvements over the best previously known algorithm.

A parallel sorting algorithm needs to redistribute N keys across
p processors such that they are in a globally sorted order. In such an
order, keys on processor k are no greater than keys on processor k+1
and keys are sorted within each processor. An exact splitting (we use
the terms partitioning and splitting interchangeably) is achieved if
all processors own the same number of keys, while an approximate
splitting guarantees that every processor owns no more than N (1 +
€)/p keys for some €; we call this an e—balanced partition. Given
sorted keys with an approximate splitting for € = O(1), an exact
splitting can be achieved at no cost in asymptotic running time.
However, it increases the running time in practice and is often not
required by applications. Algorithms that guarantee a balanced
partition for a given € are favorable since a large € increases the
memory footprint and can hurt application performance.

The most natural way to cheaply determine a global partition
is to collect a sample of keys, and infer a global partition from
the ideal partition of the sorted sample. Sample sort [15] and its
variants are basic realizations of this approach, which are widely
used in practice [25], and also serve as building blocks for our
algorithm. Selecting a random sample of the data and partitioning
the input key space using the random sample suffices to achieve
the desired load balance w.h.p.! so long as ©(plog N/e?) keys are
collected in the sample [19]. A deterministic balanced splitting is
also possible via sampling, for example, using sample sort with
regular sampling [24, 28]. With regular sampling, the algorithm
collects p/e keys from each processor, that partition the local input
data on each processor evenly, requiring a total sample size of
O(p?/e) from all processors for a balanced split. However, these
classical results leave substantial room for improvement. We show
that it suffices to collect a number of samples that scales near-
linearly with p and logarithmically with 1/e.

Histogram sort [22, 29], which embodies the histogramming
technique, iteratively refines a partition (set of splitters), by repeat-
edly collecting histograms of the total number of input keys in
each interval induced by the latest set of splitters. The number of
histogramming rounds required to determine all splitters within
the allowed threshold is bounded by O(log Z), where Z is the
size of the input domain. For skewed distributions, the number of
rounds could be large and the use of the input domain implies that
Histogram sort is not a pure comparison-based sorting algorithm.

Recently, Axtmann et al. [5] proposed a scheme based on the
histogram of the partition induced by a random sample. They show
that using ©(p(log(p) + 1/€)) samples results in an e-balanced

!with high probability. In our context, > (1 — O(p~)) for some fixed ¢ > 0
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partition w.h.p.. Our main contribution is demonstrating that
by using log(log(p)/e€) steps of refinement with histogramming,
O(plog(log(p)/€)) samples in total suffice for an e-balanced par-
tition. Our algorithm improves the communication cost for the
partitioning step (proportionally to the reduction in sample size),
at the cost of a small increase in the number of parallel steps (BSP
supersteps / synchronizations). This factor of improvement also
holds if the partitioning schemes are used in a multi-stage fashion,
for example by first splitting the data into +/p parts, then sorting
each part recursively with /p processors.

The improvement in cost warrants the introduction of an algo-
rithm that combines sampling and histogramming, which we call
Histogram sort with sampling (HSS). HSS carefully weaves together
standard techniques in such a way that the resulting algorithm is
provably better than the state of the art. The analysis of the algo-
rithm is nontrivial; the main challenge resolved in this paper is in
identifying and proving an invariant that shows global quadratic
convergence of the partitioning algorithm. The main intuition be-
hind the algorithm and proof comes from consideration of splitter
intervals, which are subranges around ideal splitter keys in the
globally sorted order of input keys. In each round, HSS uniformly
samples keys in the union of all splitter intervals, then tightens
each splitter interval using a histogram of the collected sample. Our
main analytical result is that the size of the union of the splitter
intervals decreases geometrically with the number of rounds.

By characterizing HSS, we establish the theoretical soundness
of iterative histogramming as a technique, that is known to be
effective [21, 29] in practice. Our algorithm is simple, provably ro-
bust to arbitrary distributions with repeated keys, and effective
in practical scenarios where the input is already partially sorted.
We provide a parallel Charm++ implementation of the HSS al-
gorithm and demonstrate improvements over one of the fastest
publicly-available distributed-memory parallel sorting algorithms,
HykSort [30] in both single-staged and multi-staged settings. Addi-
tionally, we show that our algorithm improves performance with
respect to Histogram sort within the ChaNGa N-body code [20],
which uses sorting every time-step to distribute moving cosmo-
logical bodies along a space-filling curve. Our theoretical analysis
of parallel execution cost, comparative performance evaluation,
and application case study unanimously identify HSS as the pre-
ferred parallel sorting algorithm. We have made our code available
online [2].

2 PROBLEM STATEMENT

Let A(0),...,A(N — 1) be an input sequence distributed across p
processing elements, such that each processor has N/p keys. We
assume that there are no duplicates in the input. In Section 6.1 we
discuss how to reduce a sorting problem with duplicate keys to a
sorting problem with no duplicates, with very little overhead. Our
proofs and algorithm also translate to scenarios where input keys
are not evenly distributed across each processor. Parallel sorting
corresponds to redistributing and reordering the elements so that
the ith processor owns the ith subsequence of keys in the sequence
1(0),...,I(N — 1), where {I(0),...,I(N — 1)} = {A(0),...,A(N —
1)} and I(i) < I(i + 1). We say that key A(j) = I(r) has rank r.
In practice, keys are typically associated with values, but in the
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context of the algorithms we study, handling values of a given size
is straightforward.

It is common to additionally require that the resulting distribu-
tion of sorted keys is load balanced among processors. We com-
pare algorithms with the standard assumption that the distribu-
tion is locally balanced, i.e. each processor owns no more than
(1 + €)N/p keys. However, our algorithm achieves a stronger guar-
antee, namely that the distribution is globally balanced, i.e. processor
i owns all keys greater than or equal to S(i) and less than S(i + 1),
where each S(i) is a splitter that satisfies S(i) = I(y(i)), with

x (i) € i,
where target range: 7; = &—E, &+&
p 2 p 2
One practical advantage of a globally balanced distribution in the
context of iterative applications, is that if the initial distribution
is nearly sorted and globally balanced, the data exchange step is
guaranteed to require little data movement.

We note that, given either type of load-balanced splitting, post-
processing may be done to obtain an exact splitting [12]. For a
locally balanced distribution, this might require some processors to
potentially communicate all of their data to one or two other pro-
cessors. However, given a globally balanced distribution, achieving
an exact splitting would require communicating only at most Ne/p
keys per processor. Therefore, a more fundamental distinction is
in whether a parallel sorting algorithm maintains load balance at
all times, i.e. no processor is ever assigned more than (1 + €)N/p
keys. Satisfying this condition permits bounded memory footprint,
which is desirable for a parallel sorting library implementation.

The focus of this paper is on the data-partition step of partition-
based sorting algorithms. Sample sort by regular sampling [24, 28],
histogram sort [22, 29], sample sort by random sampling [11, 15],
parallel sorting by over partitioning [23], AMS sort [5], HyK-
Sort [30] fall into this category. Partition-based sorting algorithms
determine a set of splitters that achieve either a locally or globally
balanced splitting, then redistribute keys. The algorithm can run in
multiple stages by splitting up data among subsets of processors and
sorting recursively within each subset. In section 5, we evaluate the
time complexity of HSS and a multi stage variant of HSS using the
standard Bulk Synchronous Parallel (BSP) model by Valiant [32].

3 RELATED WORK

Sample sort [15] and histogram sort [22] are closely related to our
algorithm, we review these and other sorting algorithms before
proceeding to our main result.

3.1 Sample sort

Sample sort [10, 15, 18, 24, 28] is a standard well studied parallel
sorting algorithm. Sample sort samples s keys from each processor,
and sends them to a central processor to form an overall sample
of size M = ps keys. Let A = {49, A1..., Aps—1} denote the combined
sorted sample. Sample sorting algorithms choose p — 1 keys from
A as the final splitters. Generally, sample sort algorithms consist of
the following three-phase skeletal structure.
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(1) Sampling Phase: Every processor samples s keys and sends it
to a central processor. s is often referred to as the oversampling
ratio. See Section 3.2 for sampling methods.

Splitter Determination: The central processor receives sam-
ples of size s (from Step 1) from every processor resulting in
a combined sample A of size (ps). The central processor then
selects splitter keys: S = {S(1), S(2)...,S(p — 1)} from A by pick-
ing evenly spaced keys from A. The splitters partition the key
range into p ranges, each range assigned to one processor. Once
chosen, the splitters are broadcast to all processors.

Data Exchange: Once a processor receives the splitter keys,
it sends each of its keys to their destination processor. As dis-
cussed earlier, a key in range [S(i), S(i + 1)) goes to processor i.
This step is akin to one round of all-to-all communication and
places all input data onto their assigned destination processors.
Once a processor receives all data that is assigned to it, it merges
them using a sequential algorithm, like merge sort.

—
S
~

—
SY)
=

3.2 Sample sort: Sampling methods

We discuss two sampling methods- random sampling and regular
sampling, for the sampling phase (step 1) of sample sort.

3.2.1 Random sampling. With random sampling as described
by Blelloch et al. [11], each processor divides its local sorted input
into s blocks of size (N/ps) and samples a random key in each
block, where s is the oversampling ratio. The splitters are chosen
by picking evenly spaced keys from the overall sample of size ps,
collected from all processors. Of particular reference to our work is
the following theorem, (Lemma B.4 in [11]).

THEOREM 3.1. With O(PIZ% N) samples overall, sample sort with

random sampling achieves (1 + €) load balance w.h.p..

3.2.2  Regular sampling. With regular sampling [24, 28], every
processor deterministically picks s evenly spaced keys from its local
sorted data. The central processor collects these samples and selects
splitters from this sample, just like random sampling. We reproduce
the following theorem from [24, 28].

THEOREM 3.2. If's = g is the oversampling ratio, then sample sort
with regular sampling achieves (1 + €) load balance.

Because of the large number of samples required, the sampling
phase is unscalable for regular sampling. Sample sort with random
sampling is more efficient, but scalability is still hindered in practice
because of the large sample size required to achieve a load-balanced
splitting.

3.3 Histogram Sort

Histogram sort [22, 29] addresses load imbalance by determining
the splitters more reliably. Instead of determining all splitters using
one large sample, it maintains a set of candidate splitter keys and
performs multiple rounds of histogramming, refining the candidates
in every round. Computing the histogram of a set of candidate keys
gives the global rank of each candidate key. This information is
used by the algorithm to finalize splitters or to refine the candidate
splitter keys. Once all the splitters are within the given threshold,
it finalizes the splitter keys from the set of candidate keys. The data
exchange phase of Histogram sort is identical to the third phase of
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sample sort. We give an overview of the splitter determination step
in histogram sort.

(1) The central processor broadcasts a probe consisting of M sorted
keys to all processors. Usually, the initial probe is spread out
evenly across the key range (unless additional distribution in-
formation is available).

(2) Every processor counts the number of keys in each range de-
fined by the probe keys, thus, computing a local histogram of
size M.

(3) Local histograms are summed to obtain a global histogram at a
central processor using an M-item reduction.

(4) The central processor finalizes and broadcasts the splitters if a
probe key within the desired range has been found for each of
the p—1 unknown splitters. Otherwise, it refines its probes using
the histogram obtained and broadcasts a new set of probes for
the next round of histogramming, in which case the algorithm
loops back to Step 2.

Candidate keys are refined by splitting the input key range be-
tween successive candidate keys according to their ranks [29]. His-
togram sort is guaranteed to achieve any arbitrary specified level of
load balance. It is also scalable in practice for many input distribu-
tions, since the size of the histogram every round is typically kept
small - of the order O(p). The number of histogramming rounds
required to determine all splitters within the allowed threshold is
at most log, (), where Z is the range of the input i.e. maximum
key minus the minimum key (treating € as a constant here). The
number of rounds can be large, especially for skewed input distribu-
tions. Histogram sort has been successfully employed in real world,
highly parallel scientific applications, for instance ChaNGa [20].

3.4 Other Sorting Algorithms

In parallel sorting by over partitioning [23], proposed for shared
memory multiprocessors, every processor picks a random sample
of size pks from its local input and sends it to a central processor.
The central processor sorts the overall collected sample and choses
pk — 1 splitters by selecting the st%, 25!, . (pk —1)s'" keys. These
splitters partition the input into pk buckets, more than required.
The splitters are made available to all processors and the local input
is partitioned into sublists based on the splitters. These sublists
form a task queue and each processor picks one task at a time
and processes it by copying the data to the appropriate position
in the memory, determined using the splitters. The idea of over
partitioning is closely related to histogramming. Recent work on
sorting algorithms for asymmetric read and write costs [8] and low
cache complexity [9] are complimentary to our work and can be
used in combination with HSS.

3.4.1 Merge based parallel sorting algorithms. In this paper, we
primarily focus on partition-based algorithms. Merge-based algo-
rithms are another class of sorting algorithms that merge data
in parallel using sorting networks. An early result was due to
Batcher [6] which uses time (or equivalently depth in a sorting
network) O(log? N) with N processors. The AKS network [4] was
the first sorting circuit of depth O(log N), but had large constants
because of the use of expander graphs [13, 26]. Later, Cole [14] pro-
posed a circuit that also ran in O(log N) time using N processors,
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but had smaller constants. A communication optimal algorithm in
the BSP model was proposed by Goodrich [16]. Cole’s merge sort
and its adaptation to BSP by Goodrich follow a merge-tree, but
employ sampling to determine a partition that accelerates merging.
Overall, unless data-partitioning schemes are also employed, merge-
based algorithms tend to be less performant due to their need for
more BSP supersteps for the expensive data-exchange step and in
some cases more communication than partition-based alternatives.

3.5 Large scale parallel sorting algorithms

Several recent works have focused on large scale sorting. Hyk-
Sort [30], a state of the art practical algorithm, employs multi-staged
splitting and communication to achieve better scalability. HykSort
is a hybrid of sample sort and hypercube quick sort. Even though
Hyksort’s algorithm for splitter selection also uses sampling and
histogramming, there is a key difference in the sampling method
between HSS and HykSort (see Section 4.2.2). As we show in Ap-
pendix A, this is critical for the running time as HykSort requires
at least Q( log(p)/log2 log(p)) times more samples than HSS in
the worst case. Our experiments confirm faster convergence in
HSS and benefits of HSS over Hyksort in both single-staged and
multi-staged settings (see section 6).

AMS-sort [5] employs overpartitioning for splitting. AMS-sort’s
scanning algorithm (Lemma 2 of [5]), used to select splitters, is
better than HSS with one round of histogramming by a factor
of ®(min(logp, 1/¢)). However, HSS with multiple rounds of his-
togramming is more efficient than AMS-sort. The scanning algo-
rithm does not easily generalize to multiple rounds of histogram-
ming. Further, HSS achieves a globally balanced partition, while
AMS-sort achieves only a locally-balanced splitting, providing less
robustness in preservation of existing distributions. AMS-sort can
be performed in a multi-stage fashion, with successive steps of
splitting and data exchange across a decreasing set of processors.
HSS can run in the same multi-stage fashion, but with each data
partitioning step done with multiple rounds of histogramming. We
compare the asymptotic running times of AMS-sort and HSS with
multiple stages in Table 3.

3.6 Single stage AMS sort

The single stage AMS-sort [5] collects a single set of samples, per-
forms one round of histogramming, then picks a locally balanced
splitting based on the histogram. The splitters obtained after the
first histogramming round achieve the specified level of load bal-
ance w.h.p. with an oversampling parameter that is much less than
sample sort with random sampling. In Section 5, we show that
the cost of histogramming is asymptotically same as the cost of
sampling an equal number of keys, so AMS sort achieves a clear
theoretical improvement over sample sort. We review the AMS
algorithm in some detail, due to its close relation to our approach.

3.6.1 Scanning algorithm. AMS sort uses a scanning technique
to decide the splitters once the histogram is obtained. The algorithm
scans through the histogram and assigns a maximal number of
consecutive buckets (all keys between two consecutive keys in the
total sorted sample) to each processor. Specifically, after assigning
i buckets to the first j processors, it assigns buckets i + 1,...,i + k
to processor j + 1, where k > 0 is picked maximally so that the
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total load on processor j + 1 does not exceed N(1 + €)/p. The last
processor gets all the remainder elements. If the sample size is
sufficiently large, the average load on the first p — 1 processors is
greater than N/p w.h.p..

In particular, a sample of size ©(p(logp + 1/€)) is necessary to
achieve a locally balanced partitioning w.h.p.. Demonstrating this
formally is difficult due to the conditional dependence of loads
assigned to consecutive processors. We formalize the proof of a key
lemma in the analysis of scanning algorithm in [5] (Appendix A
in [17]). In Table 2 we compare the cost of AMS sort to versions
of sample sort and HSS. AMS sort achieves a lower asymptotic
complexity than HSS with a single round of histogramming. How-
ever, HSS can achieve an asymptotically lower complexity in O(1)
BSP supersteps and even lower complexity with O(loglogp/e)
supersteps while at the same time providing a globally balanced
distribution.

4 HISTOGRAM SORT WITH SAMPLING

The basic skeleton of HSS is similar to that of Histogram Sort. In
addition, HSS employs sampling to determine the candidate probes
for histogramming. Every histogramming round is preceded by
a sampling phase where each processor samples local keys and
the overall sample collected from all processors is used for the his-
togramming round. By histogramming on the sample, HSS requires
significantly fewer samples compared to sample sort.

4.1 HSS with one histogram round

We first describe HSS with one round of histogramming, whose
data-partitioning step is slightly less efficient than AMS sort, by
a factor of @(min(logp, 1/€)). However, HSS achieves a globally-
balanced splitting because of which HSS with one round is easily
generalizable to multiple rounds of histogramming, which we dis-
cuss in subsequent sections and is the main contribution of this
paper. Extending the single round scanning algorithm of AMS sort
to multiple rounds for improved complexity is non-trivial. With
multiple rounds of histogramming, HSS is more efficient than the
scanning algorithm of AMS-sort, in fact, O(1) rounds of histogram-
ming suffice for an asymptotic improvement.

Recall that in HSS, a satisfactory ith splitter (in terms of global
load balance) is found when a candidate key is found that is known
to have rank in target range 7; = [Ni/p — Ne/2p, Ni/p + Ne/2p].
If for each target range 7;, the sample contains at least one key
with rank in 7;, then after histogramming on the sample, all such
splitters will be found. Intuitively, the algorithm should sample
adequate number of keys so that at least one key is picked from

each 7; w.hop..

LEmMMA 4.1. Ifevery key is independently picked in the sample with
ps _ 2plnp
| ‘N T~ "eN

to be zTnp) then at least one key is chosen with rank in 7; for each i,

wh.p..

probability,

, where s, the oversampling ratio is chosen

Proor. Recall that the input set is denoted by A. The size of
Ti = Ne/p. The probability that no key is chosen with rank in 77
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Ideal Splitters

After first round of histogramming

| Splitter Intervals after first round

After second round of histogramming

Splitter Intervals after second round

Figure 1: Figure illustrating HSS with multiple rounds. After first round, samples are picked only from the splitter
intervals, in proportional to the interval length. Notice how the splitter intervals shrink as the algorithm progresses.

N number of keys to sort in total
E P number of processors sorting keys
S | A the ith input key
s | I(r) key with rank r in the overall global order
Ti [Ni/p—Ne/p, Ni/p+Ne/p] is the target range for the ith splitter
sj the sampling ratio for the jth round, in particular
_g each key in y;j is in the jth sample with probability s;p/N
= 1 L) rank of largest sample key below rank Ni/p after j rounds
S | Ui() rank of smallest sample key above rank Ni/p after j rounds
® | I(i) = [I(L;(i)), I(U;(i))] is the ith splitter interval after j rounds
Yi the union of all splitter intervals after j rounds

Table 1: Notation used in paper, index j refers to Histogram-
ming round, while i is the processor index.

in the overall sample for a given i is given by,
Ne
(1_12)”?\ _ (1 _ 2plnp)7 < o2l _ 1
N p?

eN
Since there are p — 1 splitters, the probability that no key is chosen
from some 77, is at most (p — 1) x p~2 < 1/p. O

Lemma 4.1 leads us to the following theorem, showing global
load balance of HSS with one round. The theorem will also be useful
in the analysis of multiple rounds of histogramming, each round
of which effectively increases the oversampling ratio by collecting
the same number of samples from a smaller subset of the complete
set of keys.

THEOREM 4.2. With one round of histogramming and sample size
O(plog(p)/e), HSS achieves (1+¢€) load balance w.h.p..

4.2 HSS with multiple rounds

We show that HSS can be made more efficient by repeated rounds
of sampling followed by histogramming. We build upon the key
observation that after the first round of histogramming, samples
for subsequent histogramming rounds can be intelligently chosen
using results from previous rounds.

4.2.1 Sampling method. For the sampling phases, our algorithm
chooses a sample from a subset y of the input. Initially, y represents
the entire input. As the algorithm progresses, y gets smaller. HSS
uses the following sampling method.

Sampling Method: Every key in y is independently chosen to
be a part of the sample with probability ps/N, where we refer s
as the sampling ratio. The above sampling method simplifies the
analysis, since sampling from disjoint intervals are independent.
Note that the notion of sampling ratio is different from the over-
sampling ratio of sample sort and one round HSS since the size
of the overall sample collected from all processors with the above
method is (ps|y|/N) in expectation.
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4.2.2  HSS with k histogramming rounds: Algorithm.

(1) In the sampling phase before the first histogramming round,
each input key is picked in the sample with probability (ps1/N),
where s1 is the sampling ratio for the first round. Samples are
collected at a central processor and broadcast as probes for the
first histogramming round.

Every processor counts the number of keys in each range de-
fined by the probe keys (the overall sample for the current
round), thus, computing a local histogram. All local histograms
are summed up using a global reduction and sent to the central
processor.

For each splitter i, the central processor maintains L;(i): the

@

G

~

lower bound for the i*" splitter rank after j histogramming
rounds, i.e. rank of largest key seen so far, which is ranked
less than Ni/p. Likewise it maintains Uj(i), rank of small-
est key ranked greater than Ni/p. Once the histogram reduc-
tion results of the j/ round are received, the central proces-
sor updates L;(i) and U;(i) and broadcasts the sample keys
I(L;(i)), I(U;(i)) bounding each splitter by the splitter interval
T0) = (1L (). 1R; ()]

(4) Once every processor is aware of the new splitter intervals, it

=

begins its sampling phase for the (j + 1)* " round. Every key
which falls in one of the splitter intervals is picked in the sample
with probability (psj+1/N), where s; denotes the sampling ratio
for the j'* round. If j < k, samples from all processors are
collected at a central processor and broadcast for the next round
of histogramming, in which case the algorithm loops back to
step 2. If j = k, the histogramming phase is complete and the
algorithm continues to step 5. Step 2, 3 and 4 can be executed
efficiently if the local data is already sorted.
(5) Once the histogramming phase finishes, the key ranked closest
to Ni/p among the keys seen so far is set as the ith splitter.
Later, we discuss how to choose k and the sampling ratios s;’s
so that the splitters determined this way result in a globally
balanced partition.

The critical difference between HykSort and HSS is in the sam-
pling method. HykSort samples equally from all splitter inter-
vals whereas HSS samples in proportion to the interval length.
By sampling more from larger intervals, HSS is able to narrow
down the intervals quicker. We show that HykSort requires at least
Q ( log(p)/ log? log(p)) times more samples than HSS in the worst
case (see Appendix A).

A crucial observation is that the splitter intervals shrink as the
algorithm progresses and hence the sampling step is executed with
a subset of the input that gets smaller every round. Let y; denote the
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set of keys in the input that belong to one of the splitter intervals
after j rounds. |y;| represents the size of the input that the algorithm
samples from, for the j*" round. We have, lyil < XiUj(i) = Lj(i),
where Uj (i) — L;(i) is the number of keys in the ith splitter interval.
Some splitter intervals can overlap, hence the inequality . In fact, it
is easy to see that there is no partial overlap between two splitter
intervals, that is, either two splitter intervals: 7;(i1) and Z; (i) are
disjoint or they are identical.

Our proof outline is as follows. First we show in Lemma 4.3 that
the algorithm will achieve a good splitting w.h.p. if the sampling ra-
tio for the final round (the k%" round) is chosen to be large enough.
Having shown that the algorithm terminates after k rounds, achiev-
ing a globally load balanced partition, we bound the sample sizes
in each round by first bounding |y;| in terms of the sampling ratio
sj necessary to obtain all splitters w.h.p.. Finally, we appropriately
set the sampling ratios such that the size of the union of splitter
intervals, that is, |y;| decreases by a constant factor. Intuitively,
sampling ratio s; in round j (where samples are chosen only from
the splitter intervals in round j) can be thought of as choosing
samples from the entire input range with an oversampling ratio of
sj and discarding unnecessary samples.

LEmMA 4.3. Ifsg = 222 pe the sampling ratio for the kth round,
then at least one key is chosen from each T; after k rounds w.h.p..

. . . 2plnp .

Given a sampling ratio of s; = =5, all splitters are found
w.h.p, by Lemma 4.1. We next bound the expectation of the size of
the union of all splitter intervals.

LEMMA 4.4. Lets; be the sampling ratio for the jtP round, I(i)
be the splitter interval for the i splitter after j rounds and yj denote
the set of input keys that lie in one of the I;’s, then, E(|y;|) < %

Proor. Since Lj(i) and Uj(i) are only improved every round,

. L Ni . :

L) <L) < =5 < Uj0) < a9
Further Vx : 0 < x < (Uj_l(i) - %)

(-

As aresult, we can bound the size of the ith splitter interval,

)-=5 >

fﬁ)x

o v

Uj>1(i)—M

a5, a3
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.. Ni ,
By a similar argument we have that, E [7’ - Lj(l)] < s

Thus, E[ly;|] < E[Zu; z)ﬂAI] Z [Uj(i)—Lj(i)]
—Z [——L(z)]+E[U](z)——]

<ZZN _ 2N
; psj Sj [m}

Lemma 4.4 suggests that y; will be small in expectation. The next
lemma shows that it is also small w.h.p..

LEmMA 4.5. Ifs; < "ln , then, yj| <

Proor. The main challenge in proving the above theorem is in
handling the dependency in splitter intervals, for e.g. when they
overlap. We first modify the definition of splitter intervals in the
following way, so that the union of the splitter intervals remains
unchanged.

4N
5 wh.p.

UJ'(l) = mm(w

50). 1500 = mae (L

L;(0)

The above definition effectively strips the splitter interval
[I(Lj(1)),1(U;(i))] to [I(L;.(i)),l(Uj’(i))]. To see that stripping
doesn’t change the union of all splitter intervals, consider a U; (i)
which is greater than N(i + 1)/p. Then by definition, we have
Uj(i) = Uj(i + 1). Thus, the portion of 7;(i) that extends beyond
N(i + 1)/p is included in Z;(i + 1). Hence, restricting U;(i) to
Ni/p + N/p doesn’t change y; - the union of 7;’s. An inductive
argument (by considering splitter intervals from left to right) shows
that restricting all U;’s doesn’t change y;. A similar argument can
be used for L;’s.

Observe that, Uj’ (i)’s are independent random variables. This
is because the possible values of Uj'(il) and Uj’(iz) for iy # iy are
completely disjoint. The value of Uj’ (i) is determined completely
by sampling in the interval [Ni/p, N(i + 1)/p) and since sampling
in disjoint intervals are independent, Uj' (i)’s are independent.

We have, E[Uj’(z) - Ni/p] < E[Uj(i) = Ni/p] < N/ps;.

Ni ZN]

Thus,P[ZUj’(z‘) -
i

Sj

<#[ Yy - -ego-71> 7]

_w
sf < e—Zlnp

-2 [ 5N 1p?
J =

1
— (using Hoeffding’s inequality)

IN

Note that Uj’ (i) — Ni/p lies strictly in the interval [0, N/p], this
fact is used in the application of the Hoeffding s inequality. On
similar lines we have, };(Ni/p — L;(Z)) w.h.p.. We then

—,
Sj
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conclude,

I <Z(U;<i>—%)+(%

The next lemma bounds the sample size for each round in terms
of the sampling ratios.

L\ 4N
_Lj(z)) < ; w.hp. 0O

LEMMA 4.6. Let Z; be the sample size for the j*" round and sj >
Sj-1, then Zj < (5ij/Sj71) w.h.p.

Proor. We have, E[Z;] = |yj-1lpsj/N. We also have, |yj-1| <
4N/sj_1 w.h.p., using Lemma 4.5.

Given that |yj—1| < 4N/sj—1, using Chernoff bounds,

P[Z; > (5psj/sj-1)] < P[Z;j > E[Z;] + psj/sj-1]

_(175]'/51'—1)2 _(st/sj—l)zN

<e GEZ] — o lyles;
_(psj/sj-1)*Nsjq »

<e 1Nps) e =

With Lemmas 4.6 and 4.3 in hand, we are now prepared to
discuss how to appropriately choose the sampling ratios so that
our algorithm achieves the desired load balance.

For HSS with k rounds, if we set the sampling ratio for the j*"
round as s; = (2Inp/ €)'k then after k rounds all splitters are
found w.h.p., using Lemma 4.3. The size of the union of splitter
intervals, that is, |y;| is less than 4N /s; = 4N(e/2 lnp)l/k using
Lemma 4.5. The sample size for the j¢# histogramming round is at
most 5ps;j/sj—1 = 5p(2Inp/e)'/k
our main theorem.

using Lemma 4.6. This gives us

THEOREM 4.7. With k rounds of histogramming and a sample size
of O (p \k[ lo%p) per round , HSS achieves (1 + €) load balance w.h.p.
for large enough p®.

Observe from theorem 4.7 that there is a trade off between the
sample size per round (O(p {/log p/e€)) of histogramming and the
number of histogramming rounds. To minimize the number of
samples across all rounds, we take derivative of (kp {/log p/e) w.r.t.
k and set it to 0,

lo
d(kp 41 log 252
(kp ogp/e)zpklogp/e(l_ %8 —¢ ):o
dk k
o k= log %8P
€

The overall sample size O (kp {/log p/e) attains global minimum for
k = log(log p/€) histogramming rounds and |y;| < 4N/(e)’ at the
minima using Lemma 4.5. Across all rounds, the overall sample
size from all processors is O(plog(logp/€)). This leads us to the
following main theorem.

THEOREM 4.8. With k = O(log(logp/e€)) rounds of histogram-
ming and O(p) samples per round (O(1) from each processor), HSS
achieves (1 + €) load balance w.h.p., for large enough p.

Setting € = p/N results in exact splitting and hence we get the
following result for exact splitting.

2lnp

2Specifically, so long as sj==¢

< l‘z—P for Lemma 4.5
np
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THEOREM 4.9. HSS with O(p) samples per round overall can
achieve exact splitting in O(log N/p + loglog p) rounds.

5 RUNNING TIMES

We model an algorithm’s parallel execution as a sequence of BSP
supersteps, during each of which, processors perform computa-
tion locally, then send and receive messages. An algorithm’s BSP
complexity consists of three components:

(1) the number of supersteps (synchronization cost),

(2) the sum over all supersteps of the maximum amount of compu-
tation done by any processor during the superstep (computation
cost),

(3) the sum over all supersteps of the maximum amount of data
sent or received by any processor during the superstep (com-
munication cost).

We permit processors to send and receive p messages every super-
step, which simplifies the analysis of the all-to-all data exchanges.
The model captures the performance trade-offs for our purpose,
more histogramming rounds increase number of supersteps but
lower communication cost.

We analyse the computation and communication cost for sample
sort and HSS. Both algorithms have the same cost for initial local
sorting, broadcasting splitters and data exchange. The computation
cost of local sorting is O((N/p) log %) No communication is in-
volved in local sorting. The cost of broadcasting splitters once they
are determined is O(p). The final data movement requires all data
to be sent to their destination processors, hence the communication
cost involved is O(N/p). Once a processor receives all data pieces,
it merges them, which takes O((N/p) log p) computation time.

5.1 Cost of Sampling

Collecting a sample of overall size S onto one processor, requires a
single BSP superstep with a communication cost of O(S). In prac-
tice, random sampling is usually performed with each processor
selecting S/p elements, and a gather collective communication pro-
tocol, which collects all samples onto one processor. Sorting the
overall sample on a central processor costs O(S log p) work locally
if each processor provides a sorted contribution to the sample.

5.2 Cost of Histogramming

A local histogram can be computed in O(Slog(N/p)) time using S
binary searches on the local sorted input, where S denotes the size
of the histogram. A global histogram is computed by reducing all
local histograms. An S-item reduction requires 2 BSP supersteps
(one for a reduce-scatter and one for an all-gather) with O(S) com-
munication and computation [27, 31]. The histogram probes and
the splitter intervals are broadcast to every processor for histogram-
ming. The communication cost of broadcasting a length S message
is O(S). Thus, both the computation and communication costs of
histogramming are proportional to the overall sample size.

The BSP complexity of the data partitioning step of sample sort,
AMS sort, and HSS are shown in Table 2. AMS sort and HSS require
significantly fewer samples due to histogramming. We observe that
the best HSS configuration has strictly superior complexity to all
other considered algorithms.
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Algorithm Overaslilziample Computation complexity Cocrzzgilei;it;on Supersteps
Regular sampling 0(1’?2) O(‘ﬂ?2 logplogp) O(‘%Z) o(1)
Random sampling O(pk;—%N) O(M) O(plz—%N) 0(1)

Single stage AMS sort O(p(logp + %)) O(p(logp + é) log N) O(p(logp + é)) 0(1)
HSS with one round 0(@) O(%logN) O(@) 0(1)
HSS with two rounds O(p 1"%1’) ()(p l"%l’ log N) O(p 10%1’) 0(1)
HSS with k rounds O(kp Kk 1"#) O(kp k h’%p log N) O(kp @) O(k)
Hsilez?sfo(rlfa:f fgfllﬁzper O(plog “£L) O(P log “£L log N ) 0(17 log 'i") O(log “E2)

Table 2: Cost complexity of data partitioning step of Sample sort, AMS sort, and HSS. Data exchange costs are excluded.

Sample size per

Algorithm
stage

Computation complexity

Communication complexity Supersteps

AMS sort, I stages | O(r(logr + é))

0(% log N + Ir(logr + g)logN)

O(lr(logr +1)+ %\’) o)

HSS, [ stages
O(log 10%) rounds
per stage

O(rlog ")

0(%logN+lrlog(

€

log r )log N)

O(irtog ®2 + V) | o(11og 22)

Table 3: Cost complexity of [-stage HSS and AMS sort; the size of processor group decreases by a factor of r = p!/ ! each round.

5.3 HSS with Multiple Stages

Like AMS-sort, HSS can be generalized to a multi-stage algorithm.
We refer readers to [5] for details on multi-stage AMS sort. We
simply consider the benefit of replacing the data-partitioning step
in multi-stage AMS-sort with multiple histogramming rounds of
HSS. The rest of the algorithm involving the data exchange steps is
unchanged. The running time complexities of / stage AMS-sort and
I stage HSS in the BSP model are shown in Table 3. In each step, a
processor group gets divided into r = p!/! processor groups.

The first local sorting takes O (N log(N/p)/p) time. At the end
of each stage, every processor receives O(r) data pieces that it
needs to merge. So, the total computation cost of local sorting after
every stage excluding the first local sorting is O((IN/p) logr)
O((N/p) logp). This gives an overall computation cost of local
sorting as O((Nlog(N/p))/p + (Nlogp)/p) = O((NlogN)/p).
The computation cost of sampling and histogramming for HSS
is O(rlog((logr)/€)) log N) per stage. Each sampling, histogram-
ming and data exchange step takes O(1) BSP supersteps. The num-
ber and cost of all of these steps is uniform throughout stages, so
all of these costs are multiplied by a factor of [, the number of
stages. Consequently, we observe a trade-off between the cost of
data partitioning and the cost of data exchanges that depends on I.

6 IMPLEMENTATION

We implemented HSS in C++11 in the Charm++ [3, 7, 21] framework.
Charm++ allows an application to create any number of virtual pro-
cessors, called chares which are scheduled by the runtime system.
Additionally, chares can be tied to a specific core or a node (called
group and nodegroup chares in Charm++ terminoology).

Our implementation comprises of three phases; local sorting of
input data, splitter determination using histogramming, and final
data exchange. We use C++ sort for local sorting for the first phase.
Let t denote the total number of threads and p denote the number
of processors (processes or ranks).
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e Histogramming Phase: The histogramming phase determines
p — 1 splitters for process level splitting. For the sampling phase
before every histogramming round, each thread samples probe
keys, from its input, which lie in the union of splitter intervals. If §
denotes the fraction of input covered by the splitter intervals, then
every thread picks s/§ samples from its entire input and discards
samples that don’t lie in any of the splitter intervals. This way the
expected size of the overall sample is s X t, where s can be thought
of as the oversampling ratio. The overall sample is assembled at
the central processor and broadcast for histogramming. Every
thread computes a local histogram using binary searches on it’s
locally sorted input. The local histograms are summed up using a
reduction and sent to the central processor.

e Data Exchange: Once every processor receives the splitters, input

data from all threads within a processor are merged and parti-

tioned into p messages, one for each processor.

Local Merging: Once a process receives all data that falls in its

bucket, it merges and redistributes data among its threads using

HSS with one round.

6.1 Handling duplicates via implicit tagging

We use the following standard technique to deal with duplicates in
the inputs. We enforce a strict ordering on keys by implicitly replac-
ing each key k with a triplet (k, processor, ind), where processor
denotes the processor that k resides on and ind denotes the index
in the local data structure, where the key is stored.

6.2 Multi-staged sorting and comparisons with
other algorithms

To compare HSS to Hyksort in both single-staged and multi-staged
settings, we implemented the splitting algorithm of HSS in the
HykSort code [1], written in the MPI framework. This allows a
fair comparison without the side-effects of two different parallel
programming frameworks, namely Charm++ and MPI.
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HykSort. We used 1 sample per processor per round for Figure 3: Single staged runs with 16 threads per processor, 1M

this experiment. The worst case number of iterations in- 8-byte long keys per processor. Experiments were run on the
creases more gradually in HSS (O(log(logp/€))) than Hyksort Stampede 2 supercomputer.

(Q(log(p/€)/ loglog p)). Experiments were run on the Stampede
2 supercomputer.

7 EXPERIMENTAL RESULTS

In this section, we describe our experimental results. The goal of our
experiments is to demonstrate the fast splitter determination of HSS
compared to other state of the art algorithms and to demonstrate
its benefits in both single-staged and multi-staged settings. We also
include a brief application study to supplement our results.

7.1 Fast convergence of splitters

HSS determines all splitters in O (log(log p)/€) rounds using O(1)
samples per round per processor. This results in faster convergence
compared to HykSort, which requires Q(log(p/e€)/ loglog p) rounds
with the same number of keys. We ran the splitting algorithm of HSS
and HykSort with 1 sample per processor per round and € = 2% to
verify the same. As illustrated in Figure 2, the number of iterations
in HSS increases gradually compared to HykSort. Note that the
execution time of the splitting phase is directly proportional to the
number of iterations.

7.2 Weak scaling and comparison to HykSort

In this section we describe single-staged experiments and compar-
isons to HykSort. We implemented HSS’s splitting algorithm in
HykSort’s code for the fairest comparison. For this set of exper-
iments we used 1 million keys per processor and 16 threads per
processor. We used a probe size equal to 5p per histogramming
round for both HSS and Hyksort which we found to be a reasonable
sample size. We also found the default sample size of Hyksort, set
as per [30] to be suboptimal for this set of experiments. Figure 3
illustrates weak scaling experiments. Besides the splitting time for
the splitter determination step, the local sorting time and the data
exchange times are also shown (which are common to both Hyk-
sort and HSS). As can be observed from the figure, the difference
between HSS and Hyksort’s splitting phase becomes more appar-
ent with increasing number of processors. The improved splitting
of HSS results in a modest improvement of 10-15% in the overall
running time for higher number of processors.

Single-staged AMS sort requires about 2p max(1/e,logp)) =
100p for p = 2048 samples to achieve the desired splitting. In con-
trast, HSS took 6 iterations to converge with 5p samples per iteration
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resulting in about 30p samples overall. The execution time of the
splitting phase is directly proportional to the number of samples,
hence one can expect single-staged AMS to take approximately 3x
time for the splitting phase.

7.3 Multi-staged experiments

In this section, we present multi-staged experiments (specifically
with 2 stages) where data is first distributed among k processor
groups consisting of p/k processors each for k — way sorting. Multi-
staged sorting is helpful when the number of message startups
(= p messages) per processor becomes a bottleneck. This happens
for a large number of processors or when the number of keys per
processor is small enough that very fine grained messages have to be
sent to other processes in the data exchange step which slows down
the sorting operation. Note that there is an overhead associated
with multi-staged sorting as data needs to be moved multiple times
in comparison to single-staged sorting where data is exchanged
just once between the source and the destination processors.

For this set of experiments, we used 10° keys per processor and
1 thread per processor. We used k = 128 as we found it to be a
reasonable threshold for using 2-staged sorting. It also happens to
be the recommended setting as per [30]. Note that [/p T = 128 for
p = 16384. We used a tolerance threshold € = 1% per stage so that
the overall imbalance is at most 2%. A single thread per process
was used to maximize the number of processors. Accordingly, we
also scaled down the number of keys/process when compared to
section 7.2. This also kept the number of keys/thread comparable
to section 7.2 (it is slightly higher in this case).

Figure 4 illustrates 2-staged runs for p = 8192 and p = 16384
processors. As can be seen from the figure, multiple stage sorting
alleviates the data exchange bottleneck and the splitter determina-
tion step becomes the major bottleneck. Figure 4 demonstrates the
benefit of using HSS in a multi-staged setting. HSS improves the
overall running time by 15 — 20% for both p = 8192 and p = 16384.
We verified that this improvement comes from improving the num-
ber of iterations for convergence in each stage: HSS converged in 6
iterations while Hyksort took 9 iterations.
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Figure 6: HSS performance with different input distribu-
tions for 2M keys/processor and 32K processors. We used 1
thread per processor to accentuate the splitter selection (his-
togramming) time. Experiments were run on the Bluegene
Mira supercomputer.

7.4 Strong scaling in ChaNGa

We implemented HSS in ChaNGa [20], a popular astronomical
application that often runs on several thousands of processors.
Sorting in ChaNGa poses unique challenges for two reasons- (i) it
employs virtual processors and hence the number of buckets (virtual
processors) are far more than the actual number of processors. In
our experiments, the number of virtual buckets were typically 10x
the number of cores and (ii) the virtual processors can be arbitrarily
placed across physical nodes and buckets on a single node need not
be contiguous. Hence, most of our shared memory optimizations are
not useful. The reason ChaNGa uses more virtual processors than
cores is to accelerate other stages of computation, made possible
by efficient parallel data overpartitioning.

Figure 5 compares sorting performance of ChaNGa with HSS
and the existing Histogram sort implementation for two datasets:
Dwarf and Lambb (see [20] for details). The datasets have a constant
number of keys, so Figure 5 represents strong scaling results. HSS
results in up to 25% improvement over Histogram sort. Note that
Histogram sort is much more sensitive to the input distribution than
HSS as it does not employ sampling (see section 7.5). The parallel
sorting execution increases for the same dataset as we increase the
number of processors. This may appear odd at first. The majority
of sorting time is spent in data splitting, and since the number of
buckets increase multiplicatively with the number of processors,
we see an increase in the execution time. The performance results
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Figure 5: Experiments showing performance of sorting rou-
long keys per processor. Experiments were run on the Stam- tine of Changa. Datasets used were Lambb and Dwarf. Exper-

iments were run on the Bluegene Mira supercomputer.
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suggest it would be possible to improve strong scaling of the split-
ting algorithm within ChaNGa by using a multi-staged version of
HSS. We leave this for future work.

7.5 Effect of input distribution

We ran HSS with the following input distributions to verify that its
running time is independent of the distribution:

(1) UNIF: Uniformly at random from the entire range

(2) SKEW1: Half of the keys are picked uniformly at random from
the entire range, the other half, uniformly at random from a
small range of size 1000

(3) SKEW2: Uniformly at random from the range [0, 100]

(4) SKEW3: Each key is bitwise and of two uniformly at random
chosen keys

(5) GAUSS: Gaussian distributed

(6) AllZeros: All keys are set to 0

As figure 6 illustrates, HSS is impervious to the input distribution
as expected from the analysis. To underscore the histogramming
cost, we used 1 thread per process since the number of splitters for
process level splitting is equal to the number of processes.

8 CONCLUSION

We presented Histogram sort with sampling (HSS), which combines
sampling and histogramming to accomplish fast splitter determi-
nation. We showed that for approximate-splitting (¢ = O(1)), our
algorithm requires ®(log log p) histogramming rounds and an over-
all sample of size ©(p log log p), improving the communication cost
by a factor of ©(log p/loglog p) with respect to the best known
partitioning algorithm. HSS is theoretically more efficient for both
approximate and exact (memory-efficient) splitting, while minimiz-
ing the number of data exchanges for both small and large degrees
of parallelism. Our work provides theoretical groundwork for the
benefits of iterative histogramming in splitter selection, a tech-
nique that is known to work well in practice. The reduced sample
size makes HSS extremely practical for massively parallel applica-
tions, scaling to tens of thousands of processors. We demonstrated
speed-ups with HSS over two other state-of-the-art parallel sorting
implementations for both single-staged and multi-staged settings.
The robustness of our results makes a compelling case for HSS as
the algorithm of choice for large scale parallel sorting.
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A HYKSORT SAMPLING ALGORITHM:
ANALYSIS

HykSort [30] selects O(f) samples from every splitter interval in
every round, thus resulting in an overall sample size O(fp). In
contrast, HSS picks samples uniformly from the union of all splitter
intervals, also resulting in an overall sample size O(fp). Effectively,
sampling in HSS from a splitter interval is proportional to the size of

log(p) )
loglog(p)
rounds, so that all splitters are within a distance of Ne/p from the

ideal splitters.

Our proof strategy is the following. First of all we reduce the
problem by using = 1. Sampling f samples per round can bring
down the number of rounds by at most a factor of §. Since we’re
only interested in the dependence of p on the number of rounds, it

log(p)
loglog(p)

the interval. We prove that HykSort requires at least Q(

suffices to show that HykSort requires at least Q(
with f = 1.

Secondly, we assume a better starting point for the splitter inter-
vals. More specifically, we assume that the initial ith splitter interval
is given tobe [Ni/p—N/2p, Ni/p+N/2p], instead of the entire range
[0, N]. Starting with a narrowed splitter interval will only decrease
the number of rounds. This eases the analysis since effectively each
splitter interval is being independently sampled and the number of
rounds should be enough so that for all i, at least one key is sampled
that is within the target range 7; = [Ni/p — Ne/p, Ni/p + Ne/p].

From here on, we can work with just one interval and determine
the number of rounds required so that at least one key is chosen in
the target range 7; = [Ni/p — Ne/p, Ni/p + Ne/p] with probability
> 1 - 1/p. Note that probability > 1 — 1/p is required to use the
union bound to bound the probability of not finding a sample in
the target range for any of the splitter intervals (there are p — 1
splitters to be determined).

HykSort’s sampling algorithm is as follows. In round r, it samples
one key k (recall that we assumed f = 1) in the splitter interval
[L(i), Ur(i)] and then updating the splitter interval as

Ur+1(i) = min(Uy (i), k)

) rounds

Lr+1(i) = max(Ly (i), k)


https://www.alcf.anl.gov/
http://www.tacc.utexas.edu
https://github.com/hsundar/usort
https://github.com/vipulharsh/hss
http://arxiv.org/abs/1803.01237
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As discussed earlier, the initial interval is

o600 =[5 5% 5

2p

In the following section we prove that it takes r = Q( log(p) )

loglog(p)
rounds such that P[U, (i) < Ni/p+Ne/p] with probability > 1-1/p.

By basically the same argument it can be shown that it takes,
r= Q(logi(g()p)) rounds such that P[L, (i) > Ni/p — Ne/p] with
probability > 1 - 1/p.

A.1 The line algorithm

Consider the following algorithm.

Line Algorithm: Pick a point wg uniformly at random in the
real interval [0, 1). In the next round pick a point wi uniformly
at random in the real interval [0, wy). Similarily, in the ith round
pick a random point w; in the interval [0, w;—1) and so on. The line
algorithm captures the sampling algorithm of HykSort.

Given a point w* € [0, 1) and probability bound p*, we wish to
bound the number of rounds r so that P[w, > w*] < p*. For the

N *
Ne/; = eand p* = 1/p. We

analysis of HykSort, we’ll set w* =

prove the following lemma.

LEMMA A.1. Fora given w* € [0, 1), the number of rounds r after
; * i log(1/p")

WthhP[Wr >w ] <pis Q(m)

Proor. By definition of the line algorithm,

0 < wjt1 <w;

Let f¥(x) be the probability density function of w;. We have the
following recurrence for f*(x),

1 ri-1
f"(x)=f %dy Vix1

The expression inside the integral represents the probability
P[wi € [x,x + dx] | wi—1 € [y,y + dy]]P[wi_l €y, y+ dy]]. We
have f°(x) = 1. Using induction on i, it can be easily seen that

log' (1)
i

flx) =

We can also obtain the corresponding cumulative density func-
tions F*(x),
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It can be verified that lim; 00 Fi (x) = xelOg(i) = 1, using Tay-
lor’s expansion for the exponential function. We have

Plw, > w*'] =1-F"(w")

r logk ()

=1-w"
!
prt k!
rok
t 1

_ _ ot . = —
= (1 e Z 0 ), where t = log >

k=0

k

ot

_ [t _ r

-2 )
k=0
—t( eg‘ftr+1
=e

(r+1)!
The last deduction is based on the error term in the Taylor ex-

pansion. We want the error term to be smaller than p*. Hence we
have,

) for some ¢ € [0, t]

rias
¢ ((r+l)!)Sp*
N log(r+1)!—(r+1)10gt210g}%—(t—§)
= (r+l)10g(r+1)—(r+1)+0(r)Zlogpi*—(t—f)

The last deduction is using Stirling’s formula:
logn! = nlogn —n+ O(logn)

Note that the dominating term in LHS is (r + 1) log(r + 1) as t isa
constant. Thus we obtain

_ ( log(1/p") )
loglog(1/p*)
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